5#

Головоломка о мятежной подводной лодке. Уровень сложности: мастер — Алекс Розенталь. Alex Rosenthal - видеоролик

Изучение английского языка с помощью параллельных субтитров ролика "Головоломка о мятежной подводной лодке. Уровень сложности: мастер — Алекс Розенталь". Метод интервальных повторений для пополнения словарного запаса английских слов. Встроенный словарь. Всего 828 книг и 2809 познавательных видеороликов в бесплатном доступе.

страница 2 из 3  ←предыдущая следующая→ ...

00:02:17
Try factoring a few and youll find the pattern
Попробуйте разные способы и вы увидите закономерность:
It could be primewhere the product must be of 1 and itself
это может быть простое число, тогда придётся умножать его само на 1,
or it could be the product of 1 and the square of a prime, such as 4.
или же это может быть произведение 1 и квадрата простого числа, например 4.
In both cases, there is exactly one sum.
В обоих случаях сумма будет одна.
For a number like 8, factoring it into 2 and 4, or 1, 2, and 4,
А для таких чисел, как 8, разложение на 2 и 4 или на 1, 2 и 4
00:02:38
creates too many options.
создаёт слишком много вариантов.
Because the bosss numbers must be less than 7,
Так как числа босса должны быть меньше семи,
As list of Bs possibilities only has these 4 numbers.
А может понять, что у В могут быть только эти четыре числа.
Heres where we can conclude a major clue.
И здесь-то мы и можем получить важную подсказку.
To think B could have these numbers, As number must be a sum of their factors
Чтобы думать, что это могут быть числа В, число А должно быть суммой его множителей,
00:02:59
so 3, 4, 5, or 6.
то есть 3, 4, 5 или 6.
We can eliminate 3 and 4, because if the sum was either,
Мы можем исключить 3 и 4, так как если бы сумма была одной из них,
the product could only be 2 or 3,
произведение могло бы быть только 2 или 3,
in which case A would know that B already knows As number,
а в этом случае А знал бы, что В уже знает его число,
contradicting As statement.
что противоречит утверждению А.
00:03:15
5 and 6, however, are in play,
Однако, 5 и 6 остаются в игре,
because they can become sums in multiple ways.
потому что они могут быть суммой разных чисел.
The need to consider this is one of the most difficult parts of this puzzle.
Необходимость иметь это в виду — самая сложная часть этой задачи.
The crucial thing to remember is that theres no guarantee
Особенно важно помнить, что нет гарантии того,
that Bs number is on As list
что число В есть в списке А —
00:03:31
those are just the possibilities from As perspective
это лишь возможные числа, с точки зрения А,
that would allow B to deduce As number.
которые могут позволить В определить число А.
That ambiguity forces us to go through unintuitive multi-step processes like:
Эта неопределённость вынуждает нас использовать такой сложный процесс:
consider a product, see what sums can result from its factors,
возьмём произведение, рассмотрим, какие суммы множителей возможны,
then break those apart and see what products can result.
а затем разобьём их и посмотрим, какие получатся произведения.
00:03:53
Well soon have to do something similar going from sums to products
Вскоре нам придётся сделать то же самое, двигаясь от суммы к произведению
and back to sums.
и обратно к сумме.
But now we knowwhen A made his first statement,
Но теперь мы знаем, что когда А сделал своё утверждение,
he must have been holding either 5 or 6.
у него было либо 5, либо 6.
B has access to the same information we do,
В располагает той же информацией, что и мы,
00:04:08
so he knows this too.
то есть он тоже это знает.
Lets review whats in each brain at this point:
Давайте ещё раз повторим, кто что знает:
everyone knows a lot about the sum, but only B knows the product.
все знают многое о сумме, но произведение известно только В.
Now lets look at the first part of Bs statement.
А теперь вспомним первую часть утверждения В.
скачать в HTML/PDF
share